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Abstract: This paper reports an experiment designed to evaluate the negative externalities 
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enter.  Payoffs for entry decline with the number of entrants, while the payoff for exit is fixed.  
Observed entry rates are centered around the level that equates expected payoffs for entry and 
exit.   There is, however, some variability in entry rates from round to round, even after 50 
rounds.  This entry variance reduces welfare, since higher entry imposes external costs on more 
people, while savings from lower entry are enjoyed by fewer people. The imposition of an 
optimal entry fee lowers entry and raises welfare as predicted, but the variability in entry rates 
continues to be a source of inefficiency.  This variability is reduced if participants can observe 
the number of entrants at any given time prior to making their own decisions.  In some sessions, 
participants were allowed to vote on the level of the entry fee every 10 rounds and to split the fee 
receipts.  This voting process yielded optimal or near-optimal fee levels after a couple of 
meetings. 
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Congestion Pricing and Welfare: An Entry Experiment 
 

Lisa Anderson, Charles Holt, and David Reiley 

 
 
I. Introduction 

 One of the most persistent problems facing cities is freeway congestion. With billions of 

dollars spent every year to add capacity, the number of commuters appears to be growing at a 

faster rate. In some case, travel on city streets is an attractive alternative.  Many commuters face 

the daily dilemma of taking a predictable, but slower, route or risking hours of gridlock on a 

potentially faster freeway.   

 Highway congestion was once just a problem for large cities like Los Angeles and 

Washington D.C., but it is increasingly affecting smaller metropolitan areas.  In addition to the 

political pressure traffic puts on city planners and other elected officials, congestion imposes 

huge welfare costs on commuters.  Instead of providing innovative solutions to this problem, 

technological advances have spawned new areas where congestion must be managed, like cell 

phones and the Internet.1 

 We study the problem of congestion in the context of a binary choice game.  Subjects 

must choose between a “safe” route with a fixed payoff and a “risky” route for which the payoff 

depends on the number of other users.  When subjects must simultaneously choose between the 

safe and risky options, there is significant congestion, resulting in large welfare losses, even 

when subjects make the same decision for as many as 60 rounds.  We test the effectiveness of a 

user fee (i.e. a toll) in this environment, and find this effective at reducing congestion.  However, 

the simultaneous nature of the decision still results in a high variance in the number of entrants, 

which is costly from a welfare perspective.  We also test information provision as a policy option 

and find that it reduces the number of entrants and the variance. 

 

II. Ducks and “Magic” 

 Yogi Berra’s once remarked: “Nobody goes there anymore.  It’s too crowded.”  The 

humorous contradiction in this comment raises the issue of how individuals actually respond to 

                                                 
1 Experiments motivated by internet congestion issues are reported in Chen and Razzolini (2001) and Friedman and 
Huberman (2004). 
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congestion.  The solution is suggested by a famous animal foraging experiment, reported by 

Harper (1982), in which two people stood on opposite banks of a duck pond in the Cambridge 

University Botanical Garden and began throwing out five-gram bread balls at fixed intervals.   

The payout rate was twice as high on one bank (every 10 seconds instead of every 20 seconds).  

The flock of ducks sorted themselves to equalize expected payoffs, as measured in grams per 

minute.  Moreover, a change in the interval times resulted in a new equilibrium within about 90 

seconds, which is less time than it would take for most ducks to obtain a single bread ball.  As 

Paul Glimcher (2002) notes, the ducks were in constant motion, with some switching back and 

forth, even after equilibrium was reached.   This stochastic element could offer an evolutionary 

advantage if it hastens the adjustment to changes in payoff conditions.   Entry and congestion 

problems arise often when choices are decentralized, as in the decisions of individuals 

concerning whether to congregate in a potentially crowded bar.  This latter case is known in the 

literature as the "El Farol" dilemma, named after a popular bar in Santa Fe (Morgan, Dylan, Bell, 

and Sethares 1999). 

Psychologists and economists have conducted a series of similar binary choice 

experiments with congestion effects, beginning with Kahenman (1988), who observed the payoff 

equalization and remarked:  “To a psychologist, it looks like magic.”  There have been a number 

of subsequent experiments in which observed behavior tends to equates payoffs, e.g. Ochs 

(1990).  This successful coordination has been explained in terms of adaptation and learning 

(Meyer, Van Huyck, Battalio, and Saving, 1992; Erev and Rapoport, 1998).  However, some 

experiments have produced too much entry into the more congestion-prone activity.  For example, 

Fischbacher and Thöni (2001) conducted an experiment in each entrant essentially gets a single 

lottery ticket with an equal chance for winning a money prize, so the expected payoff for entry is a 

decreasing function of the number of entrants.  There was excess entry, which was more severe with 

large numbers of potential entrants.   Camerer and Lovallo (1999) conclude that entry can be 

affected by overconfidence, since they observe over-entry when post-entry payoffs depend on a 

skill-based trivia competition, but not otherwise.  Goeree and Holt (2005) provide a unified 

treatment of some (but not all) of these disparate results, using the argument that exogenous random 

noise in behavior may tend to pull entry rates towards one half, which would result in over entry 

when the theoretical prediction is less than ½ and under entry otherwise.   This systematic (“inverse 

S”) pattern of over and under entry is reported by Sundali, Rapoport, and Seale (1995).   
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To summarize, the general result is that the amounts of over entry and under entry are small, 

and that theoretical predictions are fairly accurate, as long as they are not extreme.  The experiment 

reported in this paper will focus on the welfare consequences of congestion, and on factors that may 

increase efficiency.  In other words, the focus is on how to improve the lives of the ducks. 

  

III.  A Stylized Model of Congestion 

Consider a group of N commuters who must choose between a slow reliable route and a 

faster, but potentially congested freeway, bridge or tunnel. Commuting time is fixed on the safe 

route and is an increasing function of traffic on the risky route.   Suppose that the average payoff 

for an entrant is decreasing in the number of entrants: A – Bx, where x is the number of entrants 

and A and B are positive parameters.  The payoff from taking the reliable route is C, which 

represents the opportunity cost for an entrant.   With free entry, average payoffs are equalized if  

A – Bx = C, or equivalently, if  x = (A – C)/B.  This equal-payoff equilibrium outcome is not 

socially optimal, since entrants do not consider the effects of their own entry decisions on the 

other entrants.  To see this, note that the total payoff with x entrants and N – x non-entrants is:  

x(A – Bx) + (N – x)C, which is maximized when the marginal social value equals the marginal 

social cost:  A – 2Bx = C, or when x = (A – C)/2B.  It follows from these calculations that the 

optimal rate of entry is half of the equilibrium entry rate in this linear model. 

Consider an example in which the payoff for the safe route is $0.50 and the payoff for the 

is $4.50 minus the number of entrants (C = 0.50, A = 4.50, and B = 1).  Table 1 shows entry 

payoffs for the risky route with a total of 12 commuters. Notice that the payoff for the risky route 

is equal to the payoff for the safe route (at $0.50) when 2/3 of the commuters enter the risky 

route. Hence, the free-entry equilibrium prediction is for 8 of the 12 commuters to take the risky 

route, as can be verified by substituting the payoff parameters into the formula for equilibrium 

entry derived earlier. 

 
Table 1. Payoff for the Risky Route 

Number of 
Entrants 1 2 3 4 5 6 7 8 9 10 11 12 

Average 
Payoff Per 

Entrant 
4.00 3.50 3.00 2.50 2.00 1.50 1.00 0.50 0.00 -0.50 -1.00 -1.50 

Total 
Earnings 
for All 

9.50 12.50 13.50 14.00 13.50 12.00 9.50 6.00 1.50 -4.00 -10.50 -18.00 
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 Figure 1 shows the locations of the free-entry equilibrium and socially optimal entry 

levels.  The marginal (private or social) cost is $0.50, as shown by the horizontal dotted line.   

This marginal cost is the payoff from taking the safe route, and it equals the individual payoff 

from entry (“average payoff”) when there are 8 entrants, which constitutes an equilibrium.  

Individual entrants do not consider the cost of entry on other users of the risky route, so to them, 

the marginal private benefit from entry is just the average payoff, shown by the solid line in the 

figure.  But entry imposes costs on others, so the marginal social benefit of entry (shown by the 

dashed line) is below the average payoff line.  The marginal social benefit line is steeper than the 

average payoff line because, as the number of entrants increases, each additional entrant causes 

the value of entry to fall by $0.50 for a larger number of people.  The socially optimal number of 

entrants occurs where marginal social benefit is equal to the marginal private cost, at 4 entrants 

in this example.  Since the marginal private benefit of $2.50 exceeds the marginal social benefit 

of $0.50 by $2.00 at this point, an entry fee of $2.00 corrects the externality.  In the figure, the 

effect of a $2 fee would be to shift the average payoff line down by $2 in a parallel manner, so 

that the intersection with the marginal cost line occurs at the optimal entry level of 4.  The 

experiment to be discussed in the next section will evaluate the effects of both exogenous and 

endogenously determined entry fees.  
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Figure 1. Benefits and Costs of the Risky Route 
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 The equal-average-payoff equilibrium that results from free entry is closely related to the 

notion of a Nash equilibrium.   To see this, note that there is an asymmetric Nash equilibrium in 

which exactly 8 people enter, since it follows from Table 1 that a ninth entrant would earn 0, 

which is less than the $0.50 payoff from staying out.  Conversely, with 8 entrants, each earns 

$0.50, so none can be better off by taking the safe route.  There is however, another Nash 

equilibrium with 7 entrants, each earning $1, since a non-entrant who attempts to enter will drive 

the number of entrants up to 8 and hence will only earn $0.50.  (In the free-entry “competitive” 

approach, this non-entrant would enter anyway, not realizing that the act of entry will reduce the 

payoffs from entry.)   

Alternatively, consider a symmetric Nash equilibrium in mixed strategies, with the 

probability of entry denoted by p.  This probability must be set to ensure that if the other 11 

people enter with probability p, then the expected entry payoff for the remaining person exactly 

equals the exit payoff of $0.50.  This person’s expected entry payoff can be calculated as a 

function of p using the formula for the density of a binomial distribution with N = 11.  It is 

straightforward to show that the expected entry payoff is $0.50 when p is 7/11, which is 

approximately 0.64.  The difference between this number and the two-thirds entry rate that 

equalizes expected payoffs is due to the fact that the number of entrants is finite.  To see the 

intuition, think of an individual player who is considering entry or not.  To be willing to 

randomize, the person must have the same expected payoff from entry (with probability 1) and 

exit.  The player would be indifferent if exactly 8 entrants are expected (that person and 7 

others).   In order to get 7 entrants out of the 11 others with a binomial distribution, the 

probability of entry must be 7/11.   

Another perspective is to think about why randomizing with probability 2/3 is not an 

equilibrium.  If all 12 people randomize with probability 2/3, then it can be shown that each 

earns $0.50 on average, which matches the exit payoff.  But if one of these people throws the 

dice and gets a roll that indicates entry, then at that point the decision to enter (with probability 

1) will increase the expected number of entrants and reduce the expected entry payoff below 

$0.50, and the only way to restore indifference is for the entry probability to be reduced from 2/3 

to 7/11.  It may seem unintuitive, but in the symmetric mixed strategy equilibrium with all 12 

players choosing entry with probability 7/11, the expected payoff for an entrant is 68 cents.  But 
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this expected payoff is reduced to 50 cents for a person who has already decided to enter, even if 

that decision was made after seeing the outcome of a random device.   

To summarize, a Nash equilibrium in mixed strategies with risk-neutral players is for 

entry to occur with probability 0.64, and a “free-entry” equilibrium that equates expected payoffs 

involves an entry rate of 0.67.  For large numbers of players, these two approaches would be 

equivalent, and for the parameters used in the experiment, the predictions are quite close.  

Therefore, we will use the free entry prediction of 2/3 as the prediction, except as noted below.     

 

IV.  A Congestion Experiment 

 Subjects were recruited from undergraduate classes at the College of William and Mary 

and at the University of Virginia.  There were 12 sessions with 12 participants in each.  The 

experiment was conducted using the Market Entry program on the Veconlab website: 

 ( http://veconlab.econ.virginia.edu/admin.htm ).  In each of round, subjects faced a binary 

choice to enter the market (i.e., the risky route) or not.  As described above, subjects earned a 

sure $0.50 payoff in each round they did not enter.  The payoff for entry in a given round was 

determined by the total number of entrants in that round according to the following formula:   

$4.50 – 0.50*x, where x denotes the total number of entrants.   (The only exception was in the 

first session where the payoffs were all doubled, since the session involved only 20 rounds.)   

Sessions lasted about an hour and the average person earned about $0.50 per round over 30-60 

rounds, depending on the treatment, plus a $6 show-up payment.   The treatment parameters for 

all sessions and the resulting entry rates are listed in the table in the Appendix.  The data for all 

sessions are available at the site: ( http://www.people.virginia.edu/~cah2k/data/ ).  

 Figure 2 shows results from a session in which subjects made this entry decision for 60 

rounds.  While the average entry rate is close to the prediction of 2/3, there is significant 

variation from round to round.  Even with 60 rounds of play, the noise does not subside.  

Although this was the longest session we ran, the amount of variation shown here is typical of 

the sessions with shorter durations.    
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Figure 2.  An Entry Game Session with 60 Rounds (me070804) 

 

 As mentioned in the previous section, there is a symmetric Nash equilibrium for this 

game, in which each person enters with a probability of 7/11, or 0.64.   Using a binomial 

distribution (p = 0.54 and N = 12), the probabilities associated with each number of entrants can 

be calculated, as shown by the gray bars in Figure 3, which show a mode at 8 entrants.  The 

frequencies of the actual numbers of entrants for the 60 round session (in Figure 2) are 

represented by the black bars in Figure 3, which indicates that outcome variability is about what 

would be expected.    

 As noted above, free entry yields inefficient outcomes since entrants do not take the 

social cost of over entry into account.  With a linear average payoff line, the total payoff will be 

quadratic and concave, and variance will reduce average payoffs.  This effect is illustrated in the 

bottom row of Table 1.  At the equilibrium level of 8 entrants, the earnings are $0.50 for each 

person, whether or not they enter, so total earnings are $6.  Now consider how social welfare 

changes with some variance in the entry rate.   If the number of entrants is 7 in one round and 9 

in the next, the average entry rate is consistent with the theoretical prediction of 8.  However the 

average total earnings for these two periods is ($9.50 + $1.50)/2 = $5.50.  As the variance grows, 

the welfare loss grows at an increasing rate.  For example, with entry at 6 in one period and 10 in 

the next period, average of the two earning amounts is ($6.00 - $4.00)/2 = $1.   
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Figure 3.  Predicted and Observed Distributions of Entry Outcomes  

for a Session with 60 Rounds (me070804) 

 

Result 1:  There is considerable variation in the entry level, even over longs period of play, 

which results in large efficiency losses. 

 

V.  Congestion Tolls 

 A common policy approach to congestion is to tax freeway use via a toll.  Figure 4 shows 

results from a session with the optimal user fee of $2 per entrant.  Note from Table 1 that the 

private benefit from entry is $2.50 at the socially optimal entry level of 4.  Imposing this $2 cost 

on entry reduces the private benefit to $0.50, thus moving the free-entry equilibrium prediction 

to the optimal level.  Entry rates quickly fell when the user fee was imposed; the average entry 

rate was 34% with the fee. 

 Overall, the optimal entry fee was imposed in parts of six sessions.  In two of the 

sessions, the revenue collected from the fee was split equally between the 12 subjects.  In the 

other four sessions, the entry fee revenue was not rebated to the subjects.  The success of the 

entry fee did not depend on whether or not it was rebated to subjects.  In the two sessions with 

the rebate, the average entry rates were 33% and 38%, and in the sessions without the rebate, the 

average entry rates were 34%, 35%, 35%, and 35%.   Notice that the rebate may reduce the 

variance around the optimal rate, but there is still considerable noise in the data, and social 

welfare is not maximized in these sessions.   The overall effect of imposing an entry fee, with or 
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without rebate, is substantial and clear; all of the entry rates listed above with the fee are below 

the rates for the sessions with no-fee treatments: 69%, 65%, 63%, 66%, 68%, 63%, and 62%.  

There is no overlap in these entry rates by treatment, so the result would be highly significant on 

the basis of standard non-parametric tests. 
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Figure 4: Entry Game with $2 Entry Fee (me062904) 

 

Result 2:  With an optimal user fee, entry is reduced to the socially optimal level on average, but 

there is still noise.  

 

VI.  Information and Coordination 

 Despite the success of user fees at moving usage towards the socially optimal level, the 

variance in entry still persists in these sessions.  If entry decisions are not made simultaneously, 

then coordination may be facilitated by improved information about current conditions.  Much 

like rush hour traffic reports, we made information about prior entry available to subjects as they 

were making decisions.  Specifically, the number of entrants at any given point in time was 

displayed on all of the computer screens.  People were allowed to enter in any order.  Figure 5 
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shows results from a typical session with endogenous entry order and the provision of prior entry 

information.  The combination of the entry fee and the information in the last half of the session 

resulted in the socially optimal entry rate in 16 of 20 rounds of play.  In most cases, over entry 

was the result of two players clicking the “enter” button at precisely the same moment.    

Even without an entry fee, the provision of prior entry information tended to reduce 

variance of entry rates.  There were five sessions that began with 10 or more rounds of a “No-

View” treatment, and seven sessions that began with 10 or more rounds of a “View” treatment 

that posted the number of prior entrants on each screen update.  There was considerable variance 

in all of the no-view treatments, and the pattern with the View treatment was basically a flat line 

with an occasional “blip” as seen in Figure 5.  The only exception was in Session 9, where only 4 

of the first 10 entry rates were at the same level (0.67), but even in this case, the overall variance 

of entry rates was relatively low.      

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 25 30 35 40

Round

 Entry Rate No Entry Fee and Information
Entry Fee = $2 and Information
Equilibrium

 
Figure 5. Entry Game with Information about Other Entrants (me071504) 

 

The variances for the first 10 rounds of each of the 12 sessions are shown in Table 2.  All 

of the variances are less than 0.01 for the View treatments, and are greater than 0.01 for the No-

View treatments.  This difference is significant at the 0.01 level using standard non-parametric 

tests. 
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Table 2. Variances of Entry Rates in the First 10 Rounds, by View Treatment 

Session 1 2 3 4 5 6 7 8 9 10 11 12 
Variance 0.022 0.035 0.042 0.017 0.011 0.031 0.001 0.004 0.006 0.001 0.002 0.046 
Treatment NO NO NO NO NO NO VIEW VIEW VIEW VIEW VIEW NO 

   

Result 3: Information about prior entrants reduces noise, which increases welfare. When 

combined with the optimal user fee, social welfare is maximized in most rounds. 

 

VII.  Voting and Endogenous Entry Fees 

 Consider the effect of an entry fee, F, that is paid by each entrant.  One issue is whether 

the fee setter has an incentive to set an optimal fee.  Let the total earnings of entrants, the 

“surplus,” be denoted by S(x), with S”(x) < 0.  When there are x entrants, the average earnings 

per entrant are given by S(x)/x.  (If the surplus is a quadratic concave function, this yields the 

linear average payoff model considered in section III.)   The total earnings of the group as a 

whole are represented by S(x) + (N – x)C, which is maximized by equating marginal surplus to 

marginal cost:  S’(x) = C.  In contrast, the free-entry equilibrium that equates average payoffs 

from entry and exit is determined by the equation:  S(x)/x = C + F.  Multiply both sides of this 

equation by x to obtain an expression for the total entry fee revenue:  xF = S(x) – Cx, which is 

maximized when S’(x) = C,  i.e. when the marginal value of the surplus equals the marginal cost.  

Thus the revenue-maximizing fee under free entry is the efficient fee that maximizes total 

earnings for this model.  As noted previously, the optimal fee for the parameters used in the 

experiment is $2, which internalizes the externality at the optimal level of entry.  One way to 

provide subjects in the experiments with the incentive to adopt an optimal entry fee is to split the 

fee revenues equally, since the fee that maximizes total fee revenue will maximize the 1/N share 

of this revenue. 

 Figure 6 shows results from a session in which subjects were allowed to vote on an entry 

fee, with all fee revenue divided equally among participants, whether or not they entered.  Voting 

sessions started with 10 rounds of decision making with no fee.  At the end of those 10 rounds, 

one subject was randomly chosen to be the “chair” and following instructions were read aloud: 

 

“Now everybody should come to the front of the room, and we will have a 
meeting to discuss whether or not to require people who enter the market to pay 
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an entry fee, and if so, how much the fee should be.  All fees collected will be 
totaled and divided equally among the 12 participants, regardless of whether or 
not they entered.  To facilitate this discussion, we will use a random device (throw 
of a die) to choose a person to chair the meeting.  This person will call on people 
to speak, and then when someone makes a motion that is seconded, the chair will 
count the votes.  The chair may vote to break a tie.  Once the fee is selected, it 
will be entered into the computer and will be in effect for the next 10 rounds, after 
which we may meet again to decide on a fee for the 10 rounds that follow. You 
are free to discuss any aspect of the process, except that you cannot talk about 
who enters and who does not.  Let me stress two things:  all fees collected get 
divided up equally among all participants, those who entered and those who did 
not.”    
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Figure 6. Entry Game with Voting on Entry Fee (me063004) 

 

  The chair presided over group discussions of the fee.  Anyone could propose a fee and 

call for a vote.  Majority rule determined whether the proposed fee would be enacted for 10 

rounds, followed by another vote on an entry fee for the next 10 rounds.  In this particular 

session, an entry fee of $1 was proposed and passed with very little discussion beforehand.  In a 

second meeting following round 20, someone proposed an entry fee of $2, but it only received 4 

votes.  A proposal of $0.50 also failed to pass, with only 3 votes.  A motion to keep the $1 fee 

passed with a majority of votes.   Subsequently fees of $3 and $1.50 were proposed and rejected.  
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Finally, the $2 was re-proposed and passed with 7 of 12 votes.   In another session, the subjects 

started with a $1 fee and adjusted it to $2 during the second round of voting.  However, they 

lowered it to $1.75 in the third round of voting and to $1.60 in the fourth round of voting.  In the 

last round of voting they increased the fee to $1.80. 

 

Result 4:  Subjects have some success at finding the optimal user fee with discussion and voting. 

 

VIII. Summary 

We present results from a binary choice experiment based on a stylized model of 

congestion.  On average, entry behavior is approximately at a level that equalizes expected 

payoffs, but these near-equilibrium entry rates are inefficiently high.  Moreover, the variability of 

entry from round to round introduces another source of inefficiency.  By charging the optimal 

entry fee, outcomes move closer to the socially optimal level but there is still some under and 

over entry.  The combination of the optimal entry fee and information about current entrants 

moves behavior very close to the socially optimal outcome.   

The linear congestion function used in this experiment is, for some purposes, a little too 

forgiving in the sense that small increases in traffic often have “snowball effects” that increase 

congestion dramatically.  An interesting extension would be to use congestion functions with 

nonlinear and stochastic elements.  This modification would tend to add outcome variability even 

in settings with many more potential entrants.  Also, the information-based and fee-based 

allocation mechanisms implemented in this experiment would have an additional efficiency-

enhancing role if individuals differed in their values for lowered congestion and faster 

commutes, as shown by Plott (1983).    
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Appendix.  Sessions, Treatments, and Data Averages 

 A, B, C 
N Rounds Entry Fee (Share) View Voting Predicted 

Entry Rate 
Average 

Entry Rate 

Session 1 
 me062304 

UVA 

9.0, 1.0, 
1.0 

N = 12 

1-10 
11-20 

0.00 (0) 
4.00 (1/12) 

no 
no 

No 
No 

0.67 
0.33 

0.69 
0.38 

Session 2 
me062404 

UVA 

4.5, .0.5, 
0.5 

N = 12  

1-20 
21-40 

0.00 (0) 
2.00 (1/12) 

no 
no 

No 
No 

0.67 
0.33 

0.65 
0.35 

Session 3 
me062904 

UVA 

4.5, .0.5, 
0.5 

N = 12 

1-20 
21-40 

0.00 (0) 
2.00 (0) 

No 
No 

No 
no 

0.67 
0.33 

0.63 
0.34 

Session 4 
me063004 

UVA 

4.5, .0.5, 
0.5 

N = 12 

1-10 
11-20 
21-30 
31-40 

 
0.00 (0) 

1.00 (1/12) 
1.00 (1/12) 
2.00 (1/12) 

 

No 
No 
no 
no 

No 
vote 
vote 
vote 

0.67 
0.50 
0.50 
0.33 

0.66 
0.57 
0.52 
0.35 

Session 5 
Me070104 

UVA 

4.5, .0.5, 
0.5 

N = 12 

1-11 
12-20 
21-30 
31-40 
41-50 
51-60 

 
0.00 (0) 

1.00 (1/12) 
2.00 (1/12) 
1.75 (1/12) 
1.60 (1/12) 
1.80 (1/12) 

 

No 
No 
No 
No 
No 
no 

No 
Vote 
Vote 
Vote 
Vote 
vote 

0.67 
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